
Guide

The Ultimate
Guide to
Kubernetes Security

The Ultimate Guide to Kubernetes Security2 SUSE.com

How to Secure Your Kubernetes Pipeline

The Ultimate Guide to
Kubernetes Security

The Importance of Securing Container Deployments
Containers and tools like Kubernetes enable enterprises to automate many aspects of
application deployment, providing tremendous business benefits. But these new de-
ployments are just as vulnerable to attacks and exploits from hackers and insiders as
traditional environments. Ransomware extortion, cryptojacking, data theft and service
disruption will continue to be used against new, container-based virtualized environments
in both private and public clouds.

To make matters worse, new tools and technologies like Kubernetes and managed
container services in the public cloud will themselves be under attack as a gateway into
an enterprise’s prized assets. The recent Kubernetes man-in-the-middle vulnerability
and exploit at Tesla are just the first among many container technology-based potential
exploits expected to proliferate in coming months and years.

The hyper-dynamic nature of containers creates the following
security challenges

1. Vulnerabilities introduced in the CI/CD pipeline. The heavy use of open source compo-
nents and the continual discovery of critical vulnerabilities affect container images in
the build phase, in registries, and in production.

2. Explosion of east-west traffic. While monolithic applications could be secured by tra-
ditional firewalls and host security tools, containers can be dynamically increasing the
east-west, or internal traffic that must be monitored for attacks.

3. Increased attack surface. Each container may have a different attack surface and
vulnerabilities which can be exploited. Also, the additional attack surface introduced by
container orchestration tools such as Kubernetes and Docker must be considered.

4. Automating security to keep pace. Old models and tools for security will not be able to
keep up in a constantly changing container environment. Given the automated nature of
Kubernetes, containers and pods can appear and disappear in minutes or seconds. Appli-
cation behaviors which can include new network connections must be instantly factored
into enforced security policies. Next-generation automated security tools are needed to
secure containers, declaring security policies early in the pipeline and managed as code.

https://blog.neuvector.com/article/kubernetes-man-in-the-middle-with-no-patch-in-sight.-what-does-cve-2020-8554-mean-to-your-organization
https://neuvector.com/container-security/cryptojacking-crypto-mining-tesla-kubernetes-jenkins-exploits/
https://neuvector.com/network-security/securing-east-west-traffic-in-container-based-data-center/

The Ultimate Guide to Kubernetes Security3 SUSE.com

While it can be argued that containers are by default more secure than traditional applications
because they should have limited function and specialized interfaces, this will only be true if
cybercriminals and nation-state actors launch attacks using old techniques against code
and infrastructure with no vulnerabilities, and which has been locked down against all possible
threat vectors. But we know that in practice this is not possible. And even if it were, you’d still
want to do real-time monitoring for attacks. As time and experience have shown after repeated
incidents, the sophistication of attackers always matches or outperforms new infrastructure
approaches. Bad actors are constantly developing new and novel ways to attack containers.

Security-related questions to ask your kubernetes team

• Do you have a process in place to eliminate critical vulnerabilities (with fixes available)
early in the pipeline, even in the build phase?

• Do you have visibility of Kubernetes pods being deployed? For example, do you know
how application pods or clusters are communicating with each other?

• Do you have a way to detect bad behavior in east-west traffic between containers?
• Do you know how to determine if every individual pod is behaving normally?
• How are you alerted when internal service pods or containers start to scan ports inter-

nally or try to connect to the external network randomly?
• How would you know if an attacker gained a foothold into your containers, pods, or hosts?
• Are you able to see network connections and inspect them to the same degree as you

can for your non-containerized deployments? At Layer 7, for instance?
• Are you able to monitor what’s going on inside a pod or container to determine if there is

a potential exploit?
• Have you reviewed access rights to the Kubernetes cluster(s) to understand potential

insider attack vectors?
• Do you have a checklist for locking down Kubernetes services, access controls (RBACs),

and container hosts?
• When you have compliance policies, how do you enforce the compliance at run- time?

For example, to ensure encryption for your internal pod communication, how do you
know when a pod is not using the encryption channel?

• When troubleshooting application communication or recording forensic data, how do
you locate the problem pod and capture its logs? How do you capture raw traffic and
analyze it quickly before it disappears?

This guide will present an overview for securing Kubernetes and container deployments,
with a special focus on automating run-time security.

First, it’s important to understand how Kubernetes works and how
networking is handled.

The Ultimate Guide to Kubernetes Security4 SUSE.com

How Kubernetes Works
The basics

For those not familiar with Kubernetes, this is an introduction into the key concepts
and terms.

Kubernetes is an orchestration tool which automates the deployment, updating, and
monitoring of containers. Kubernetes is supported by all major container management
and cloud platforms such as Red Hat OpenShift, Docker EE, Rancher, IBM Cloud, AWS EKS,
Azure, SUSE CaaS, and Google Cloud. Following are some of the key things you need to
know about Kubernetes:

• Master node. The server which manages the Kubernetes worker node cluster and the
deployment of pods on nodes. Nodes can be physical or virtual machines.

• Worker node. Also known as slaves or minions, these servers typically run the application
containers and other Kubernetes components such as agents and proxies.

• Pods. The unit of deployment and addressability in Kubernetes. A pod has its own IP
address and can contain one or more containers (typically one).

• Services. A service functions as a proxy to its underlying pods and requests can be
load-balanced across replicated pods. A service can also provide an externally acces-
sible endpoint for access to one-or-more-pods by defining an external IP or NodePort.
Kubernetes also provides a DNS service, router, and load balancer.

Key components which are used to manage a Kubernetes cluster include the API Server,
Kubelet, and etcd. Kubernetes also supports a browser-based management console, the
Kubernetes Dashboard, which is optional. Any of these components are potential targets
for attack. For example, the Tesla hijack exploited an unprotected Kubernetes console to
install crypto mining software.

Kubernetes role-based access controls

Kubernetes role-based access controls (RBACs) provide granular management of re-
sources. They can enable access to application workloads as well as Kubernetes system
resources. Management tools such as OpenShift may add additional capabilities but rely
on or use native Kubernetes basic security controls. It is critical to properly configure ac-
cess controls to prevent unauthorized access to Kubernetes components such as the API
Server or application workloads.

https://kubernetes.io/
https://neuvector.com/container-security/cryptojacking-crypto-mining-tesla-kubernetes-jenkins-exploits/

The Ultimate Guide to Kubernetes Security5 SUSE.com

Kubernetes networking basics

The key networking concept in Kubernetes is that every pod is assigned its own routable
IP address. Kubernetes (actually, its network plug-in) takes care of routing all requests
internally between hosts to the appropriate pod. External access to Kubernetes pods can
be provided through a service, load balancer, or ingress controller, which Kubernetes
routes to the appropriate pod.

Kubernetes uses iptables to control the network connections between pods (and between
nodes), handling many of the networking and port forwarding rules. This way, clients do
not need to keep track of IP addresses to connect to Kubernetes services. Also, port map-
ping is greatly simplified (and mostly eliminated) since each pod has its own IP address
and its container can listen on its native port.

With all of this overlay networking being handled dynamically by Kubernetes, it is ex-
tremely difficult to monitor network traffic, much less secure it. Following is an example of
how Kubernetes networking works.

The above diagram shows how a packet traverses between pods on different nodes. In
this example, the Calico CNI network plug-in is used. Every network plug-in has a different
approach for how a pod IP address is assigned (IPAM), how iptables rules and cross-node
networking are configured, and how routing information is exchanged between the nodes.

Routing table:
192.168.56.0/24 via 10.1.2.11 dev tunIO
192.168.20.21 dev calib10557e961d

POD 1
192.168.20.21src: 192.168.20.21

dst: 192.168.56.193

calib10557e951d

eth0: 10.1.2.10
tunI0: 192.168.20.0

Routing table:
192.168.20.0/24 via 10.1.2.10 dev tunIO
192.168.56.93 dev cali0d7763386da

POD 2
192.168.56.193 src: 192.168.20.21

dst: 192.168.56.193

calib0d7763386da

eth0: 10.1.2.11
tunI0: 192.168.56.33

IPIP tunnel:
src: 10.1.2.10
dst: 10.1.2.11

The Ultimate Guide to Kubernetes Security6 SUSE.com

1. Once the CNI network plug-in receives a notification from Kubernetes that a container
is deployed, it is responsible for assigning an IP address and configuring proper iptables
and routing rules on the node.

2. Pod1 sends a packet to Pod2 either using Pod2’s IP or Pod2’s service IP as the destination.
(Pod2’s IP is used in the diagram.)

3. If the service IP is used, the kube-proxy performs load balancing and DNAT, and trans-
lates the destination IP to the remote pod’s IP.

4. The routing table on the node determines where the packets should be routed.
a. If the destination is a local pod on the same node, the packet is forwarded directly to

the pod’s interface.
b. Otherwise, the packet is forwarded to the proper interface depending on whether

overlay networking or L3 routing mechanisms are employed by the network plug-in.
c. In the above diagram, the packet is sent to the IPIP tunnel interface and encapsu-

lated with an IPIP tunnel header.
5. When the packet reaches the destination node, the encapsulation is removed.
6. The routing table on the remote node routes the packets to the destination Pod2.

With the routing, possible NAT, and encapsulation occurring and being managed by the
network plug-in, it is extremely difficult to inspect and monitor network traffic for attacks
and connection violations.

Kubernetes Vulnerabilities and Attack Vectors
Attacks on Kubernetes containers running in pods can originate externally through the
network or internally by insiders, including victims of phishing attacks whose systems
become conduits for insider attacks. Here are a few examples:

1. Container compromise. An application misconfiguration or vulnerability enables the
attacker to get into a container to start probing for weaknesses in the network, process
controls, or file system.

2. Unauthorized connections between pods. Compromised containers can attempt to
connect with other running pods on the same or other hosts to probe or launch an attack.
Although Layer 3 network controls whitelisting pod IP addresses can offer some protection,
attacks over trusted IP addresses can only be detected with Layer 7 network filtering.

3. Data exfiltration from a pod. Data stealing is often done using a combination of tech-
niques, which can include a reverse shell in a pod connecting to a command and con-
trol server and network tunneling to hide confidential data.

The Ultimate Guide to Kubernetes Security7 SUSE.com

4. Compromised container running malicious process. Containers generally have a lim-
ited and well-defined set of processes running, but a compromised container can start
malware such as crypto mining or suspicious processes such as network port scanning,
or inject a binary (process exploit) that has not been seen before.

5. Container file system compromised. An attacker can install vulnerable libraries/pack-
ages to exploit the container. Sensitive files can also be changed. Once exploited, a
privilege escalation to root or other breakout can be attempted.

6. Compromised worker node. The host itself can be compromised, the same as any
active container. For example, the Dirty Cow Linux kernel vulnerability enabled a user to
escalate to root privilege.

east - west

Host

pod

Worker nodes

1

2

4

3

5

6

The Ultimate Guide to Kubernetes Security8 SUSE.com

The attack kill chain

The most damaging attacks involve a kill chain, or series of malicious activities, which
together achieve the attacker’s goal. These events can occur rapidly, within a span of
seconds, or can occur over days, weeks or even months.

Detecting events in a kill chain requires multiple layers of security monitoring, because
different resources are used. The most critical vectors to monitor to have the best chances
of detection in a production environment include:

• Network inspection. Attackers typically enter through a network connection and expand
the attack via the network. The network offers the first opportunity to an attack, subse-
quent opportunities to detect lateral movement, and the last opportunity to catch data
stealing activity.

• Container. An application or system exploit can be detected by monitoring the process and
syscall activity in each container to determine if a suspicious process has started or at-
tempts are made to escalate privileges and break out of the container. File integrity moni-
toring and access restrictions can also detect attempts to modify files, packages or libraries.

• Host monitoring. This is where traditional host (endpoint) security can be useful to
detect exploits against the kernel or system resources. However, host security tools must
also be Kubernetes and container-aware to ensure adequate coverage. For example,
new hosts can dynamically enter a Kubernetes cluster, and they must maintain the
security settings and tools which Kubernetes manages.

Weaponization

Recon

Exploitation
Command

& control

Delivery Installation Exfiltration

The Ultimate Guide to Kubernetes Security9 SUSE.com

In addition to the threat vectors above, attackers can attempt to compromise deployment
tools such as the Kubernetes API Server or console to gain access to secrets or be able to
take control of running pods.

Attacks on the kubernetes infrastructure itself

To disable or disrupt applications or gain access to secrets, resources, or containers,
hackers can also attempt to compromise Kubernetes resources such as the API Server or
Kubelets. For example, the Tesla hack exploited an unprotected console to gain access to
the underlying infrastructure and run crypto mining software.

When the API Server token is stolen/hacked, or an identity is stolen to enable access to the
database by impersonating an authorized user, malicious containers can be deployed or
critical applications can be stopped.

By attacking the orchestration tools themselves, hackers can disrupt running applications
and even gain control of the underlying resources used to run containers. In Kubernetes
there are several published privilege escalation mechanisms, via the Kubelet, access to
etcd or service tokens, which can enable an attacker to gain cluster admin privilege rights
from a compromised container.

The Kubernetes man-in-the-middle vulnerability, for example, is a relatively new malicious
security issue raising concern among security experts, and it won’t be the last. The vulner-
ability enables an attacker to take advantage of Kubernetes built-in service definition with
a less-often used option, external IPs, to initiate a man-in-the- middle attack.

The Ultimate Guide to Kubernetes Security10 SUSE.com

Securing the Entire Pipeline
Before we take a look at how run-time security can protect against man-in-the-middle
and other exploits, let’s take a step back to see how security can be integrated into the
entire CI/CD pipeline.

In the build phase, code and image analysis is critical for removing known vulnerabilities
and compliance violations before images are approved for deployment.

In the ship phase, enabling appropriate access controls and restricting deployment of
images is critical to ensuring that vulnerabilities are not intentionally or accidentally
introduced later in the pipeline.

In the run phase, properly locking down hosts and orchestration tools in preparation is
good and required hygiene, but real-time monitoring of the container environment is criti-
cal to expose and mitigate new exploits.

Although security teams always wish for the “holy grail” of one tool to provide end-to-end
security, there are many layers and steps in the pipeline to secure, and no one tool can ac-
complish all of it. In general, platforms such as Red Hat OpenShift, Docker EE, Rancher, SUSE
CaaS and AWS EKS provide security tools and features that focus on the build, ship, and
pre-deployment phases, while independent security vendors can provide end-to-end tools
which include run- time security. The run-time security tools must specialize in detecting
and preventing sophisticated network and container-based exploits. There are also a few
open source container security projects which are summarized later in this guide.

Continuous container security

Build Ship

Code Analysis

Host and Kernel Security

SElinux, AppArmor

Threat Detection Process Monitoring

Container Quarantine

Secure Docker daemon

Access Controls

Secrets Management

Encryption
Auditing, e.g. Docker
Bench
Orchestration Security
& Networking

Hardening

Image Scanning

Image Signing, e.g. Content Trust

User Access Controls, e.g. Registries

Run

Network Inspection &
Visualization

Privilege Escalation
Detection

Packet Capture &
Event Logging

Layer 7-based
Application Isolation

Run-Time Vulnerability
Scanning

Preparation Production

https://neuvector.com/container-security/continuous-container-security/

The Ultimate Guide to Kubernetes Security11 SUSE.com

CI/CD Pipeline Security
Security should be integrated into the CI/CD pipeline as early in the pipeline as possible.
For most companies, this begins when a container image is being built by developers.
An immediate scan can let developers know if there are critical vulnerabilities or compli-
ance violations which must be fixed before the image can pass through the pipeline to the
next phase. There are both technology as well as process issues which should be consid-
ered, such as:

• How will scanning be enforced and triggered in the pipeline? Most tools such as Jenkins
have plug-ins or extensions which can trigger the scan. Other tools can invoke scripts to
trigger scans through APIs.

• What is the approved process for evaluating and remediating vulnerabilities? Who
should be notified and review them?

• What criteria should be used to require remediation? Is it based on critical (high CVSS
score threshold) severity?

• When should a build job be failed? When a fix is available for a critical vulnerability, but
not when no fix is available?

• Should there be a grace period and/or exception (exemption) for violations? What is the
process for applying for exceptions?

• Should vulnerabilities discovered later in the pipeline, for example in production regis-
tries or in running containers, trigger actions in the pipeline to remediate them?

In addition to building scanning into the CI/CD pipeline, other security measures
should include:

• Access controls for pipeline tools and registries to reduce the possibility of insider abuse.
• Admission controls to prevent deployment of vulnerable or unauthorized images, or

prevent them from moving further in the pipeline.
• Enforcement of other corporate software management policies such as license controls

for open source components and code-scanning tools.

Preparing Kubernetes Nodes for Production
Before deploying application containers, host systems for Kubernetes worker nodes should be
locked down. The following section describes the most effective ways to lock down the hosts.

The Ultimate Guide to Kubernetes Security12 SUSE.com

Recommended pre-deployment security steps

• Use namespaces
• Restrict Linux capabilities
• Enable SELinux
• Utilize Seccomp
• Configure Cgroups
• Use R/O Mounts
• Use a minimal Host OS
• Update system patches
• Run CIS Benchmarks security tests

Kubernetes hosts should be continually audited and scanned in staging and production
environments to ensure that security configurations are not inadvertently misconfigured
during updates and scaling events.

Kubernetes Run-Time Container Security
Once containers are running in production, the three critical security vectors for protecting
them are network filtering, container inspection, and host security.

Inspect and secure the network

A container firewall is a new type of network security product which applies traditional
network security techniques to the new cloud-native Kubernetes environment. There are
different approaches to securing a container network with a firewall, including:

• Layer 3/4 filtering, based on IP addresses and ports. This approach includes Kubernetes
network policy to update rules in a dynamic manner, protecting deployments as they
change and scale. Simple network segmentation rules are not designed to provide the
robust monitoring, logging, and threat detection required for business-critical container
deployments, but can provide some protection against unauthorized connections.

• Web application firewall (WAF) attack detection can protect web-facing containers
(typically HTTP or HTTPS-based applications) using methods that detect common at-
tacks, similar to the functionality of web application firewalls. However, the protection is
limited to external attacks over HTTP and lacks the multi-protocol filtering often needed
for internal traffic.

The Ultimate Guide to Kubernetes Security13 SUSE.com

• Layer 7 container firewall. A container firewall with Layer 7 filtering and deep packet
inspection of inter-pod traffic secures containers using network application protocols.
Container firewalls are also integrated with orchestration tools such as Kubernetes,
and utilize behavioral learning for automated policy creation. Protection is based on
application protocol whitelists as well as built- in detection of common network-based
application attacks such as DDoS, DNS, and SQL injection. Container Firewalls are also in
a unique position to incorporate container process monitoring and host security into the
threat vectors monitored.

Deep packet inspection (DPI) techniques are essential for in-depth network security
in a container firewall. Exploits typically use predictable attack vectors: malicious HTTP
requests with a malformed header, or inclusion of an executable shell command within
the extensible markup language (XML) object. Layer 7 DPI-based inspection can look for
and recognize these methods. Container firewalls using these techniques can determine
whether each pod connection should be allowed to go through, or if they are a possible
attack which should be blocked.

Given the dynamic nature of containers and the Kubernetes networking model, traditional
tools for network visibility, forensics, and analysis can’t be used. Simple tasks such as
packet captures for debugging applications or investigating security events are not
simple any more. New Kubernetes and container-aware tools are needed to perform
network security, inspection, and forensic tasks.

Container inspection

Cyber assaults frequently utilize privilege escalations and malicious processes to initiate an
attack or spread it. Exploits of vulnerabilities in the Linux kernel (such as Dirty Cow), packages,
libraries or applications themselves can result in suspicious activity within a container.

Inspecting container processes and file system activity and detecting suspicious behavior
is a critical element of container security. Suspicious processes such as port scanning
and reverse shells, or privilege escalations should all be detected. There should be a
combination of built-in detection as well as a baseline behavioral learning process which
can identify unusual processes based on previous activity.

If containerized applications are designed with microservices principles in mind, where
each application in a container has a limited set of functions and the container is built
with only the required packages and libraries, detecting suspicious processes and file
system activity is much easier and accurate.

The Ultimate Guide to Kubernetes Security14 SUSE.com

Host security

If the host (e.g. Kubernetes worker node) on which containers run is compromised, many
types of negative outcomes can result. These include:

• Privilege escalations to root
• Theft of secrets used for secure application or infrastructure access
• Alteration of cluster admin privileges
• Host resource damage or hijacking (e.g. crypto mining software)
• Shutdown of critical orchestration tool infrastructure such as the API Server or the

Docker daemon
• Initiation of suspicious processes discussed in the previous section on container inspection

As with containers, the host system needs to be monitored for these suspicious activities.
Because containers can run operating systems and applications like the host, monitoring
container processes and file systems activity requires the same security functions as
monitoring hosts. Together, the combination of network inspection, container inspection,
and host security offers the best way to detect a kill chain from multiple vectors.

Securing Kubernetes System and Resources
If not protected, orchestration tools such as Kubernetes and the management platforms
built on top of them can be vulnerable to attacks. These expose potentially new attack
surfaces for container deployments which previously did not exist, and thus are vulnerable
to hacker incursion. The Tesla hack and Kubelet exploit are among the first of what is
expected to be a continuing cycle of exploits and patching for new technologies.

To protect Kubernetes and management platforms from attacks, it’s critical to properly
configure the RBACs for system resources. Following are areas to review and configure for
proper access controls:

1. Protect the api server. Configure RBAC for the API Server or manually create firewall rules
to prevent unauthorized access.

2. Restrict kubelet permissions. Configure RBAC for Kubelets and manage certificate rota-
tion to secure the Kubelet.

3. Require authentication for all external ports. Review all ports externally accessible and
remove unnecessary ports. Require authentication for those external ports needed. For
non-authenticated services, restrict access to a whitelist source.

4. Limit or remove console access. Don’t allow console/proxy access unless properly
configured for user login with strong passwords or two-factor authentication.

https://neuvector.com/container-security/cryptojacking-crypto-mining-tesla-kubernetes-jenkins-exploits/
https://neuvector.com/network-security/kubernetes-security-kubelet-exploits/

The Ultimate Guide to Kubernetes Security15 SUSE.com

Generally, all role-based access controls should be carefully reviewed. For example,
service accounts with a cluster admin role should be reviewed and restricted to only those
requiring it.

When combined with robust host security as discussed previously for locking down worker
nodes, the Kubernetes deployment infrastructure can be protected from attacks. However,
it is also recommended to use monitoring tools to track access to infrastructure services
to detect unauthorized connection attempts and potential attacks.

For example, in the Tesla Kubernetes console exploit, once access to worker nodes was
compromised, hackers created an external connection to China to control crypto mining
software. Real-time, policy-based monitoring of the containers, hosts, network, and
system resources would have detected suspicious processes as well as unauthorized
external connections.

The Ultimate Guide to Kubernetes Security16 SUSE.com

Auditing and Compliance for Kubernetes Environments –
Security Posture
With the rapid evolution of container technology and tools such as Kubernetes, enterprises
will be constantly updating, upgrading, and migrating container environments. Running
a set of security tests designed for Kubernetes environments will ensure that security
does not regress with each change. In this way the security posture of the infrastructure
can be assessed for exploit risks. As more enterprises migrate to containers, changes
in infrastructure, tools, and topology may also require recertification for compliance
standards such as PCI.

Fortunately, there already are a comprehensive set of security posture checks for
Kubernetes and Docker environments through the CIS Benchmarks for Kubernetes and the
Docker Bench tests. Regularly running these tests and confirming expected results should
be automated.

Some of the areas that these benchmarks test

• Host security
• Kubernetes security
• Docker daemon security
• Container security
• Properly configured RBACs
• Securing data at rest and in transit

In addition, image scanning should include CIS Benchmarks tests which are relevant
for image security. Additional image compliance tests also can inspect images for
embedded secrets and file access (setuid/setgid) violations.

Vulnerability scanning of images and containers in registries and in production is also
a core component for preventing known exploits and achieving compliance. Scanning
can be incorporated into the build process and CI/CD pipeline to ensure that all images
moving into production have been examined. In production, running containers and
hosts should be regularly scanned for vulnerabilities. However, vulnerability scanning is
not enough to provide the multiple vectors of security needed to protect container run-
time deployments.

The Ultimate Guide to Kubernetes Security17 SUSE.com

Run-time Security Applied NeuVector Container
Security Platform
Orchestration and container management tools are not designed to be security tools,
even though they provide basic RBACs and infrastructure security features. For business-
critical deployments, specialized Kubernetes security tools are needed. Specifically, a
security solution that addresses security concerns across the three primary security
vectors (network, container and host) is required.

NeuVector is a highly integrated and automated security solution for
kubernetes, with the following features:

• Pipeline vulnerability and compliance scanning of images in the build phase and in registries.
• Admission controls to prevent deployment of vulnerable or unauthorized images.
• Multi-vector container security addressing the network, container, and host.
• Layer 7 container firewall to protect east-west and ingress/egress traffic.
• Container protection against unauthorized process and file activity.
• Host security for detecting system exploits.
• Automated policy creation with behavioral learning, and adaptive enforcement to

enable auto-scaling.
• Run-time vulnerability scanning for any container or host in the Kubernetes cluster.
• Compliance and auditing through CIS security benchmarks.

The NeuVector solution is a container itself which is deployed and updated with Kubernetes or any
orchestration system such as OpenShift, Rancher, Docker EE, IBM Cloud, SUSE CaaS, EKS, etc.

The Ultimate Guide to Kubernetes Security18 SUSE.com

End-to-end vulnerability and compliance management

NeuVector enables shift-left security starting with the build phase in the CI/CD pipeline.
Container image builds can trigger a vulnerability scan and fail builds with critical
vulnerabilities. Developers can be required to remediate these vulnerabilities before their
builds are allowed to pass the build phase and be stored in approved registries. NeuVector
supports all of the popular pipeline tools such as Jenkins, CircleCI, Azure DevOps, and
Gitlab. A rest API is also available for any other build tool being used.

NeuVector then continuously scans images in approved registries for new vulnerabilities.
During image scanning in the build phase or in registries, not only is a layered scan
result presented, but additional compliance checks are run for CIS Benchmarks, secrets
detected, and file access permission violations.

A vulnerability and compliance explorer provides a powerful tool to analyze results, create
compliance reports (for PCI, HIPAA, GDPR, NIST, etc.), and report progress on vulnerability
remediation.

Image scanning results also can be tied to admission control policies to prevent
deployment of vulnerable or unauthorized images into the production environment.

The Ultimate Guide to Kubernetes Security19 SUSE.com

Run-time security

After NeuVector is deployed to each worker node, container network connections and
service dependencies are easily visualized. The security policies to isolate and protect
Kubernetes deployments are automatically created.

In real time, the NeuVector container starts inspecting network traffic and monitoring
containers and hosts for suspicious activity. Following are a few examples of how
NeuVector provides protection against multiple attack vectors in a Kubernetes
deployment.

Network isolation, segmentation and threat detection

Running pods, their network connections and security policy to protect them are
automatically discovered and visualized. Each application stack is isolated through
whitelist rules which are automatically deployed.

Attacks against containers, whether they originate externally or internally, are detected
and can be blocked. The NeuVector Layer 7 firewall can run in a monitor (network tap)
mode or a protect (inline) mode where attacks or unauthorized connections can be
blocked while keeping the container active for valid traffic. Any security incidents are
summarized in the network activity console.

The Ultimate Guide to Kubernetes Security20 SUSE.com

Packet capture is automated and simplified for Kubernetes pods, enabling forensics,
logging, and application debugging.

Container compromise detection

Unusual activity is detected in any container, with built-in detection for suspicious
processes such as port scanning and reverse shells. In addition, running processes in each
container are baselined to aid in the detection of unauthorized or malicious processes.

The Ultimate Guide to Kubernetes Security21 SUSE.com

The container file system also is monitored for suspicious activity. For example, if a
package or library is installed or updated, a vulnerability scan is automatically triggered
and an alert is generated.

Host compromise detection

Host systems are monitored for exploits such as privilege escalations. Suspicious
processes detected in containers are also detected running on hosts. For example, if
port scanning or reverse shell processes start running, NeuVector will detect and alert.
In addition, NeuVector can learn and whitelist allowed processes to run on the host, and
block any unauthorized host processes which attempt to start.

Monitoring of system containers

NeuVector also monitors system containers and network activity for each container. In the
diagram below, the Kubernetes and OpenShift containers are shown with their network
connections.

Suspicious activity to or from system containers can be easily detected.

The Ultimate Guide to Kubernetes Security22 SUSE.com

Run-time scanning - compliance and auditing

NeuVector automatically scans running pods, containers and worker nodes for
vulnerabilities, and runs the Kubernetes CIS Benchmarks tests on every node. System
containers and the orchestration platform (e.g. Kubernetes 1.19) are also scanned for
vulnerabilities.

Vulnerability scanning also can be performed by NeuVector in the build and ship phases
to inspect image registries or during the CI/CD automated pipeline. Jenkins integration is
provided to enable scanning during the image build process.

The Ultimate Guide to Kubernetes Security23 SUSE.com

Kubernetes Security Automation – Is It Possible?
With DevOps teams rushing to automate application deployment with containers and
Kubernetes, security automation is critical. Gone are the days when security teams can stop
or slow deployments and updates of applications, infrastructures, or even new clouds.

Security automation starts with creating secure infrastructures and platforms for
running containers, followed by automated run-time security. A secure infrastructure
with repeatable secure configurations can be ensured by using infrastructure as code
concepts and tools such as Terraform.

The good news is that most run-time security can be automated using a combination
of behavioral learning and Kubernetes integration with custom resource definitions
(CRDs) to implement security as code. There may always be some initial manual setup or
customization required, but when the production switch is turned on and Kubernetes starts
managing pods, your security should automate, adapt, and scale with the deployment.

New security tools such as NeuVector can provide multi-vector run-time security by fitting
into the Kubernetes deployment model. By combining a Kubernetes container firewall with
container inspection and host security, the activities in a kill chain for a damaging attack
can be detected and prevented. The modern cloud-native architecture of NeuVector
means it easily deploys as its own container, sitting next to your application containers,
providing always-on, always running security.

Because of the declarative nature of container-based applications and the extensive
integration available for tools like Kubernetes, advanced security controls can be enforced
even in the hyper-dynamic container environment. By integrating with Kubernetes and
incorporating behavioral learning and multi-vector security features such as those from
NeuVector, security automation is now possible throughout the pipeline, and is a strong
requirement for business-critical Kubernetes deployments.

https://blog.neuvector.com/article/kubernetes-policy-as-code-crd
https://blog.neuvector.com/article/container-security-automation

The Ultimate Guide to Kubernetes Security24 SUSE.com

Achieving PCI, GDPR, SOC 2, HIPAA, NIST Compliance
Achieving compliance with industry standards can be difficult for container
infrastructures. The new virtualized layers have not been scrutinized by auditors and
compliance consultants and a consensus developed for compliance requirements.

NeuVector can help achieve compliance with standards such as PCI, GDPR, SOC 2, HIPAA,
and NIST which require specific security practices and capabilities. These standards
specify security practices which can include:

• Network Segmentation and Firewalling. With the Layer 7 container firewall designed
for container and Kubernetes network filtering and protection, NeuVector is in a unique
position to fill this requirement.

• Vulnerability Scanning and Remediation. End-to-end vulnerability management en-
ables NeuVector to enforce vulnerability management policies from the build phase all
the way into production.

• Auditing Configuration Tests. Reviewing and enforcing proper configuration of systems
(hosts), orchestrators, and containers through compliance checks such as the
Kubernetes CIS Benchmarks reduces the risk of misconfiguration leading to a breach.

• Restricted Access Controls. Evaluating and granting the least required user access
privileges limits the likelihood of RBAC-based exploits and insider attacks.

• Encryption and Sensitive Data Protection. NeuVector can ensure that connections are
encrypted for data in motion and can even use DLP technology to monitor for sensitive
data leaks such as social security numbers, credit cards, and other PII.

NeuVector provides pre-configured, customizable reports for PCI, GDPR, HIPAA, and NIST
compliance reports for container deployments.

https://blog.neuvector.com/article/pci-compliance-containers
https://blog.neuvector.com/article/gdpr-compliance-for-containers
https://blog.neuvector.com/article/dont-let-kubernetes-break-your-soc2-compliance
https://blog.neuvector.com/article/nist-sp-800-190

The Ultimate Guide to Kubernetes Security25 SUSE.com

With the combination of customizable compliance reports, end-to-end vulnerability
management, firewalling and network segmentation, and compliance tests, NeuVector
has helped companies achieve compliance for new cloud-native infrastructures and
workloads. This extends beyond PCI and GDPR to standards such as service organizational
control (SOC) 2.

SOC 2 is an auditing procedure that ensures service providers (applications) securely
manage data to protect the interests of an organization and the privacy of its clients.
For security-conscious businesses, SOC 2 compliance is a minimal requirement when
considering a SaaS provider. SOC 2 compliance is mandatory for all engaged, technology-
based service organizations that store client information in the cloud. Such businesses
include those that provide SaaS and other cloud services while also using the cloud to
store each respective, engaged client’s information.

NeuVector addresses all key requirements of SOC 2 to enable organizations to exceed the
SOC 2 standard. To maintain security and achieve compliance, you need the extra layer
of protection that NeuVector provides. Financial services companies, and those in other
highly regulated industries, turn to NeuVector for the Kubernetes data loss prevention
capabilities required to keep customer information secure and businesses audit-ready at
all times.

Open Source Kubernetes Security Tools
While commercial tools such as the NeuVector container security platform offer end-to-
end protection and visibility, there are open source projects which continue to evolve to
add security features. Following are several tools to be considered for projects which are
not as business critical in production.

• Network policy. Kubernetes network security policy provides automated L3/ L4 (IP ad-
dress/port based) segmentation. A network plug-in is required which supports enforce-
ment of network policy such as Calico.

• Service meshes/ISTIO. Istio is an example of a service mesh for managing service-to-
service communication, including routing, authentication, authorization, and encryption.
Istio provides a solid framework for managing service routing, but is not designed to be
a security tool to detect attacks, threats, and suspicious container events.

• Grafeas. Grafeas provides a tool to define a uniform way for auditing and governing the
modern software supply chain. Policies can be tracked and enforced with integration
to third-party tools. Grafeas can be useful in governing the CI/CD pipeline, but is not
targeted to managing run-time security policies.

• Clair. Clair is a simple tool for vulnerability scanning of images, but lacks registry inte-
gration and workflow support.

The Ultimate Guide to Kubernetes Security26 SUSE.com

• Kubernetes CIS benchmark. CIS Benchmarks for Kubernetes security offer more than 100
compliance and auditing checks. The NeuVector implementation of these tests is avail-
able here.

• Open policy agent (OPA). OPA provides a framework for managing and enforcing security
policies. A special query language is supported to manage disparate security policies
across the enterprise, with limited enforcement through Kubernetes admission control.

NeuVector is a commercial container security solution which is compatible with these
open source projects, and offers advanced security features designed to protect financial,
compliance regulated, and other business-critical container deployments.

Summary Checklist for Run-Time Kubernetes Security
Following is a convenient checklist summary of the security protections to review for
securing Kubernetes deployments in the CI/CD pipeline and during run-time.

CI/CD pipeline

• Scan images in build phase and fail/reject those with critical vulnerabilities with fixes
available, or compliance violations.

• Continuously scan approved images in registries to alert if new vulnerabilities have
been discovered.

• Scan images for compliance violations of CIS Benchmarks as well as embedded
secrets, running as root, file permissions and other security issues.

• Implement declarative security as code practices to involve developers and/or
DevOps teams to create or review allowed (whitelisted) application behavior for their
application workloads.

Pre-production checklist for devops and security teams

• Use namespaces
• Restrict Linux capabilities
• Enable SELinux
• Utilize Seccomp
• Configure Cgroups
• Use R/O mounts

https://neuvector.com/container-security/open-source-kubernetes-cis-benchmark-tool-for-security/
https://www.openpolicyagent.org/

The Ultimate Guide to Kubernetes Security27 SUSE.com

• Use a minimal host OS
• Update system patches
• Conduct security auditing and compliance checks with CIS Benchmarks tests

Run-time checklist for operations and security teams

• Prevent unauthorized and vulnerable deployments by using admission control policies
• Enforce isolation by application/service using network segmentation and namespaces
• Inspect network connections for application attacks
• Monitor containers for suspicious process or file system activity
• Protect worker nodes from host privilege escalations, suspicious processes or file

system activity
• Capture packets for security events
• Quarantine or remediate compromised containers
• Scan containers and hosts for vulnerabilities
• Alert, log, and respond in real-time to security incidents
• Conduct security auditing and compliance checks with CIS Benchmarks

Kubernetes system protections

• Review all RBACs
• Protect the API Server
• Restrict Kubelet permissions
• Secure external ports
• Whitelist non-authenticated services
• Limit/restrict console access
• Monitor system container connections and processes in production
• Run the CIS Benchmarks for Kubernetes to audit configurations
• Keep the orchestrator version updated to remediate critical vulnerabilities

Next Steps
Want to learn more?

Visit NeuVector.com for additional container security articles on our blog or to schedule a
demo of the NeuVector Kubernetes security platform.

http://www.NeuVector.com

For more information, contact SUSE at:

+1 800 796 3700 (U.S./Canada)

+49 (0)911-740 53-0 (Worldwide)

SUSE Software Solutions
Germany GmbH

Frankenstraße 146
90461 Nürnberg
Germany

www.suse.com

Innovate
Everywhere

© 2023 SUSE LLC. All Rights Reserved. SUSE and
the SUSE logo are registered trademarks of SUSE
LLC in the United States and other countries. All
third-party trademarks are the property of their
respective owners.

